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Transport in Simple Dense Fluids 1 

J. Karkheck ,  2 G.  Stel l ,  3'4 and J. Xu 4 

A transport theory for Lennard-Jones (LJ) fluids is described. The underlying 
mean-field kinetic theory models the LJ potential by adding a hard-sphere core 
to the attractive tail of the LJ potential. The transport coefficients discussed 
here--shear viscosity, thermal conductivity, and self-diffusion coefficient-- 
exhibit Enskog-like forms, but now the radial distribution function (rdf) bears 
explicit dependence on the LJ tail as well as on the hard-sphere core. The hard- 
sphere diameter is determined according to the well-known WCA method used 
in equilibrium statistical mechanics to mimic the LJ fluid. Hence the transport 
theory employs no adjustable parameters. Numerical results are compared to 
simulation and experimental results for many states, including saturated liquid, 
triple point, and dense gas. In general, a quantitatively accurate transport 
theory is obtained for the states considered. This represents improvement, both 
numerically and conceptually, over an earlier theory. 

KEY WORDS: argon; kinetic reference theory; Kinetic variational theory; 
saturated liquid; transport coefficients; triple point. 

1. I N T R O D U C T I O N  

T h e  L e n n a r d - J o n e s  ( L J )  6 12 pa i r  p o t e n t i a l  ~ , ( r ) = 4 e L j [ ( a L j / r )  1 2 -  
(O'Lj/r) 6] has  p r o v e n  to  be  a useful  m o d e l  p o t e n t i a l  for the  s tudy  of  a wide  

r ange  of  p rope r t i e s  of  s imple  n o b l e - g a s  f luids a n d  can  be  used  as an  

effective pa i r  p o t e n t i a l  for  m o r e  c o m p l i c a t e d  fluids such  as n i t r o g e n  a n d  
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methane. However, the problem of accurately predicting the transport 
properties such as shear viscosity, thermal conductivity, and self-diffusion 
coefficient of the LJ fluid from rigorous, fundamental molecular theories 
has proven to be very difficult. The recently developed kinetic variational 
theory (KVT) and kinetic reference theory (KRT) of Karkheck and Stell 
(KS) for model potentials with a hard-sphere core and soft attractive tail 
[1~4] seem to provide one viable route toward the solution of this 
problem. The application to LJ fluids of the simplest versions of the KS 
theories, the KVT I and KRT I, has been reported previously to this 
symposium for both one-components fluids [-5] and binary mixtures [6]. 
It is the purpose of this paper to apply more refined versions (KVT III and 
KRT II1) of the KS theories to the same study. 

We treat the LJ potential by adding to the LJ attractive tail a hard- 
core repulsion with diameter a and letting the potential be constant--eLj 
for a <  r<~ro =2~/6am. The resulting potential defines a system that was 
used by Sung and Chandler [7] in the study of thermodynamic and struc- 
tural properties of the LJ fluid by letting a be temperature and density 
dependent. Such a reference system was called by Sung and Chandler the 
trial system. We study the transport properties of the LJ fluid by studying 
those of the trial system. 

For the trial potential (and for other potentials with a hard-sphere 
core and soft attractive tail as well), the one-particle generic distribution 
function f l ( x l ,  t) satisfies the exact dynamic equation [2] 

) ; s -~-Vl.V 1 fl(Xl, t )=~ 2 dv2 dtTO(4.g)tT.g(f2(rl, v1,rl+a6, vz, t) 

') +--1 f Vl'/' ') m 

where xi is the vector (r;, vi), ~ is the hard-core diameter, m is the particle 
mass, g = Vz-V~, ~(r12) is the pair potential, ff is the unit vector between 
the two particles, 0 is the Heaviside function, and the two-particle generic 
distribution function fz(Xl, x2, t) is used to define a weight function 
G(xl,  x2, t) through 

f2(xl, x2, t )=f1(xl ,  t) f l (x2,  t) G(Xl, x2, t) (2) 

Equation (1) is not closed but is, instead, the first member of a set of 
hierarchical equations for the s-particle generic distribution function 
f s (x l ,  x2 ..... x~, t) where s = 1, 2 ..... To effect an approximate closure con- 
dition to Eq. (1), KS employed the formalism of maximization of entropy 
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first used by Lewis [8]  to derive the Boltzmann equation. The general idea 
is to maximize the basic entropy functional 

S = --kB f dNx WN(X N, t) In WN(X N, t) (3) 

subject to certain constraints (with more refined constraints yielding more 
refined versions of the KS theory). Here in Eq. (3), WN(X N, t) is the 
full N-particle probability density and kB is the Boltzmann constant. 
Maximization subject to the constraint 

fl(xl, t)= N f dN-lx WN (4) 

yields a WN= WN(fl ) such that 

/ 2 ( X l ,  X2, t) : N ( N -  1) f dN- 2x W N (5) 

gives rise to an explicit form for G(xl, x2, t), which results in closure of 
Eq. (1). In the simplest version of the KS theory, S is maximized under the 
constraints of core impenetrability and Eq.(4), plus conditions of 
symmetry and normalization, to yield the closure 

G(xl x2, t )=  -HS~r , ~ 2  ~ 1 , r 2 1 n )  (6) 

where g2nS(rl,r2ln) is the pair-correlation function for a hard-sphere 
reference system at equilibrium with the same core diameter a and the 
spatially nonuniform density field n = n(r, t). 

To go beyond the KVT I, Stell et al. developed KVT II and KVT III 
I-3] by replacing the hard-core constraint with the total potential energy 
conservation and local potential energy conservation, respectively, in the 
entropy maximization formalism. The KVT II thus obtained has the 
closure condition 

G(xi, x 2, t ) =  g2(rl, r2 ]n,/~ ) (7) 

Here g2 is now for the full pair potential and has a cluster expansion term 
by term identical in form with that of the equilibrium rdf [9],  with n ver- 
tices and f bonds, where f =  e x p [ - / ? O ( r , 7 ) ] -  1. The Lagrange multiplier 
/~=/~(t) is conjugate to the total potential energy density. Similarly, the 
KVT III yields a G with the same expansion but with each f bond replaced 

__1 [ by f =  exp[-/~,jtk(r~)] - l, where /~0- ~[/3( i, t) +/~(rj, t)]. The Lagrange 
multiplier field/3(r, t) is conjugate to the local potential energy density. 
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For each, shear viscosity, thermal conductivity, and self-diffusion coef- 
ficient, KVT II and KVT III yield identical expressions that are identical in 
form to the KVT I expression (which is in turn identical in form to the 
Enskog-theory expression) but now with the reference hard-sphere struc- 
ture replaced by the structure of the full system. (In the case of bulk 
viscosity, however, the situation is different and more subtle. The KVT II 
and KVT III treatments are different as discussed in Ref. 10. We refer the 
reader interested in bulk viscosity to that reference.) The extensions of 
KRT I, namely KRT II and KRT III, are obtained by adding to the exact 
hard-sphere result the change in the KVT II and KVT III results, respec- 
tively, when the attractive LJ tail is added to the hard-core result. The 
resulting approximation has proved to give quite accurate transport predic- 
tions for the LJ fluid (experimentally, argon) in the liquid region [11 ], as 
we note below. 

In the next section, we give our basic formulas and the procedure of 
adapting our results to the LJ fluid using perturbation techniques. 
Section 3 compares our theoretical results with those of experiments and 
computer simulations. 

2. FORMULAS AND COMPUTATIONAL PROCEDURE 

For a fluid with a pair potential consisting of a hard core with 
diameter cr and a soft continuous attractive tail ~b,, 

~,(r) = {;',, fOrfor r>~rr<~ (8) 

the KVT III gives the following expressions for the shear viscosity t/, the 
thermal conductivity 2, and the self-diffusion coefficient D (which comes 
from the mixture version of KVT III) that are identical in form to the 
original Enskog-theory hard-sphere expressions [12]: 

l I l + ~ (~ ~na3z) + O.7615 (~ rcna3z) 21tlo (9) n=} 

2=~II + 5(2rcna3z)+O.7575(~rcna3z)212 o (10) 

D =--D~ (11) 
Z 

with qo, 2o, and Do the dilute-gas expressions given in the fourth Enskog 
approximation for r/o and 2 o and in the third Enskog approximation for 
Do as 
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5 (nmkBT) 1/2 
= (12) ~/0 1.016 x 16 ~ 0  "2 

75kB (~mkB T) 1/2 
= - -  (13) 2o 1.025 • 64m ~r  2 

3 (rcmkBT) 1/2 
- -  ( 1 4 )  D = 1.018 x 8nm ~a 2 

In the above equations, n is the number density and Z is the equilibrium 
radial distribution function for the full potential evaluated at contact 
(r12 = a + ). In passing, we note that Eqs. (9)-(11) are appropriate only for a 
continuous-tail ~b,. For  tails that have a discontinuous truncation (e.g., the 
square-well fluid), additional terms, involving g(r) at the discontinuity, 
appear. 

The hard-sphere reference system transport coefficients (which are also 
KVT I values) are obtained by simply replacing the contact value ~ by Z Hs 
of a hard-sphere reference system with the same number density n alnd 
core diameter a. The Carnahan-Starling formula [13] 

zH s _ 1 -- (7r/12) na 3 (15) 
(1 -- (~/6) n~3) 3 

provides us with a quite accurate approximation for Z Hs. In applying 
KVT III, we use the EXP approximation [14] to calculate Z. The EXP 
approximation has been shown via computer simulations to be quite 
accurate for short-ranged potential tails [ 15]. 

Both the KVT I and the KVT III neglect velocity correlations. Com- 
puter simulation of the hard-sphere fluid [ 16] shows that, at high densities, 
velocity correlations have appreciable effects upon the shear viscosity and 
self-diffusion coefficient but lesser effects upon the bulk viscosity and ther- 
mal conductivity. Such effects have been expressed as correction factors 
to the Enskog expressions. For the shear viscosity, we use the correction 
factor originally proposed by Dymond [-17] and later modified by 
van der Gulik and Trappeniers [18] on the basis of the computations by 
Michels and Trappeniers [19]. It is given by 

C, = 1.02 + 15 - 0.35 + 350 - 0.575 (16) 

where the full expression is used for Vo/V>0.575, the first two terms are 
used for 0.427< Vo/V<0.575, and the first term only is used for Vo/V< 
0.427. Here Vo is the close-packed volume and Vo/V= na3/x/2. Equation 
(16) should not be used for Vo/V>0.66, where the hard-sphere fluid 
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becomes metastable. For the self-diffusion coefficient, we use the correction 
factor recently proposed by Speedy [20], 

CD=Z ns ( 1 -  na3'] (1 + 0.4n20-6-- 0.83n4a12) (17/ 
1.09J 

for the entire density range up to na 3 ~ 1.09, at which diffusion appears to 
cease at a glass transition. 

The KRT I shear viscosity r/KRT ~ and self-diffusion coefficient DKRT~ 
are given by 

Cu (18) r/KRT I = ~ qKVT I 

and 
CD 

D K R T I = I . - ~ - ~ D K v T I  (19) 

respectively. The two constants 1.016 and 1.018 come from the fact that 
Eqs. (16) and (17) are constructed in the first Enskog approximation. 

To construct the KRT III approximation, we add the exact hard- 
sphere result to the change predicted by the KVT III theory when the LJ 
tail is turned on. For prescribed density and temperature, this is equivalent 
to adding the difference between the KVT III and the KVT I results to the 
KRT I expression. We therefore have 

/~KRT III = /']KRT I "q- ~]KVT III - -  ~]KVT I (20) 

DKRT I I l =  DKRT I -[- DKVT III - -  DKVT I (21) 

In other words, we assume that the velocity correlation effects upon the 
transport properties can be approximated by those due to the hard core, 
ignoring the velocity correlation effects of the tail attraction. The numerical 
accuracy of Eqs. (20) and (21) in the liquid region, discussed in the next 
two sections, seems to support this assumption for typical liquid-state 
conditions. A rigorous theoretical probe of this assumption and the use of 
forms other than Eqs. (20) and (21) is currently under investigation. 

When applying KVT and KRT to a LJ fluid, which does not have a 
hard core, some adaptation of our hard-core formalism has to be made 
[-1, 5]. For given density and temperature, the prescription of Weeks, 
Chandler, and Andersen (WCA) 1-21] is used to obtain the effective hard- 
sphere diameter a wcA of the trial system. The contact value g of the trial 
system is obtained using the EXP approximation 1-16]. The resulting a wcA 
and Z are then substituted into Eqs. (9) (14) to yield the particular 
realization of the KVT II and KVT III transport coefficients that we report 
here. (Other recipes for the state dependence of o- give somewhat different 
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numerical results. We find the WCA recipe to be the most overall 
appropriate one for a LJ fluid among the recipes we have tried.) The 
KVT I transport  coefficients are obtained by inserting a wcA and Zns into 
Eqs. (9)-(14). Using the correction factors given by Eqs. (16) and (17), we 
obtain K R T  I t ransport  coefficients via Eqs. (18) and (19). The differences 
between the KVT III  and the KVT I transport  coefficients are then added 
to the K R T  I results to give the K R T  III  transport  coefficients. We have 
estimated the maximum numerical uncertainty of our KVT III  and 
K R T  III  t ransport  coefficients due to the approximate numerical schemes 
used in getting a and ;~ to be 1.6 %, which is found for the self-diffusion 
coefficient in the liquid region near the triple point. For  other transport  
properties and in other regions, the uncertainty is much smaller. 

3. COMPARISON WITH EXPERIMENT A N D  SIMULATION 
RESULTS 

The LJ parameters for argon are taken to be the conventional ones: 
aLj = 3.405 • 10 lom and ~Lj/kB = 119.8 K. The molecular weight of argon 
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Fig. 1. Comparison of shear viscosity of argon on the saturated 
liquid line from KVT I (----), KRT I (---), KVT III (-- - --), 
KRT III ( - - ) ,  and experiment (O) from Younglove and Hanley 
[22]. The units are shear viscosity (in Pa.s• 10 4) and tem- 
perature (in K). 
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is M = 39.948 u and thus the conversions among various representations of 
density are p (in g-cm-3)=0.039948p (in m o l - L - 1 ) =  1.6803n*, where 
n* = ntT~j is usually used in the presentation of computer simulation results 
together with the reduced temperature T* =kaT/eLj. The application of 
K V T I  and K R T I  has been studied in detail previously [1, 5]. It was 
found that KRT I with the WCA prescription for a and KVT I with the 
MC/RS prescription for a give the best overall predictions for the shear 
viscosity and thermal conductivity, respectively. This is a bit awkward 
because two different effective diameters are needed at a given state in 
order to get accurate predictions. We have tested our KVTII I  and 
KRT III in this connection using the WCA method exclusively. Results are 
shown in Figs. 1 and 2 for the shear viscosity and thermal conductivity, 
respectively, for saturated liquid argon. The KVT I and KRT I results 
shown are also obtained in the WCA prescription. The KVT I thermal con- 
ductivity curve in the MC/RS prescription is very close to our KVT III 
curve and is therefore not shown here. The experimental results of argon 
are taken from Younglove and Hanley [22]. We find that our level III 
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Fig. 2. Comparison of thermal conductivity of argon on the 
saturated liquid line from KVT I ( - - - ) ,  K V T I I I  ( - - ) ,  and 
experiment (O)  from Younglove and Hanley [22]. The units 
are thermal conductivity (in W . K - I . m - ' •  1) and tem- 
perature (in K). 
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predictions, using the WCA prescription exclusively, give about the same 
accuracy as the previous level I results obtained with two different recipes 
for the diameter. Level III is also superior to level I with the use of any 
single prescription of diameter. Thus the KVT III and KRT III studied 
here provide a simple and consistent theoretical framework for the 
prediction of transport coefficients of simple real fluids. 

Table I shows the comparison of our KVT III and KRT III transport 
coefficients with those from experiments and computer simulations for 

Table I. Comparison of Transport Coefficients from Theory (KVT III and KRT III) 
and Experiment (Including Computer Simulation) a 

Transport Simulation (S) and 
State coefficient Our value experiment (E) values 

q 2.72 (KRT III) 2.77 (E) (_+3%) 
2.71 (E) 

2.62-2.89 (S) 
2 1.46 (KVT III) 1.32 (E) (-I-4%) 

1.34 (S) 
1.27 (S) 

Liquid (triple point) 
n* = 0.844 
T* =0.73 

Liquid 
n* =0.818 
T* =0.761 

Liquid 
n* =0.715 
T* = 0.94 

Supercritical 
n* = 0.20 
T* = 1.60 

Dense "hot" supercritical fluid 
n* = 1.040 
T* =2.51 

n* = 1.074 
T* = 2.502 

~/ 2.19 (KRT III) 2.35 (E) ( + 3 % )  
D 2.42 (KRT III) 2.30 (S) 

q 1.26 (KRT III) 1.27 (E) (___ 3 %) 
2 0.97 (KVT III) 0.91 (E) ( + 4 % )  

0.94 (S) (_+5%) 

r/ 0.226 (KVT III, KRT III) 0.227 (E) (_+3%) 
2 0.205 (KVT III) 0.198 (E) (_+4%) 

t/ 5.12 (KVT III) 4.91 (E) (-I-3%) 
4.80 (E) 
4.85 (S) 
5.78 (S) 

~/ 5.86 (KVT III) 5.84 (E) ( +3 %) 
D 2.95 (KVT III) 3.10 (S) 

aThe units are ~/ (in P a . s x l 0  4), 2 (in W . K - l . m - l x  10-1), and D (in m2.s  l x l 0  9). 
Simulation (S) and experiment (E) references can be found in Ref. 11. 
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many states of argon. It is seen that overall agreement is quite good. We 
note that even experimental (including computer "experimental") results 
have quite a large uncertainty, especially near the triple point and in the 
dense, hot supercritical fluid region. The accuracy of our theoretical results 
is, however, within this uncertainty. The velocity correlation effects become 
very important in the liquid region near the triple point, as can be seen 
from our KRT III results. (There the KVT III results are not even close to 
those from experiments and are not included in Table I.) An interesting 
observation in Table I is that in the dense hot supercritical region, the 
KVT III transport coefficients are very close to the experiment and 
simulation results, while the KRT III corrections are grossly inaccurate and 
are not shown. We regard the inability of the KRT III to treat with quan- 
titative accuracy a temperature range that includes wide extremes as a 
manifestation of the importance of the details of soft, relatively long-range 
potentials in determining velocity correlations, which in turn appear to be 
significant in determining the global temperature dependence of the 
transport coefficients. 
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